
WireGuard in eduVPN
Report

Nick Aquina
SURF, Utrecht

Fontys University of Applied Sciences, Eindhoven

INTERNSHIP REPORT

FONTYS UNIVERSITY OF APPLIED SCIENCES

HBO-ICT

Data student:

Family name, initials: Aquina, N

Student number:

project period: (from – till) 31 August 2020 – 22 January 2021

Data company:

Name company/institution: SURF

Department: Team Security

Address: Kantoren Hoog Overborch, 3511 EP Utrecht,
Moreelsepark 48

Company tutor:

Family name, initials: Spoor, R

Position: (Tech) Product Manager

University tutor:

Family name, initials: Vos, A

Final report:

Title: WireGuard in eduVPN

Date: 12 January 2021

Approved and signed by the company tutor:

Date: 12 January 2021

Signature:

Preface
This report is written for my internship for Fontys. The internship was done at SURF for the eduVPN
project. My task was to build a proof of concept in which WireGuard is integrated into eduVPN. This
internship took place from September 2020 until January 2021.

I would like to thank Arno Vos for his guidance and feedback throughout this internship.

I would also like to thank Rogier Spoor for guiding me throughout this internship and inviting me to
meetings which gave me a valuable insight into cyber security and technological issues facing members of
SURF.

And last, but not least, I would like to thank François Kooman for all technical support, advice and code
reviews which helped improve the project.

All blue text can be clicked to open a hyperlink.

1

https://eduvpn.org

Contents

Preface . 1

Summary 4

Introduction 5
Free software . 5

The company (SURF) 6

Project 7
Context / Initial situation . 7
Project goal . 7
Assignment . 7
Constraints . 8
Development strategy . 8

How does eduVPN work? 9
Dictionary . 9
Research strategy . 9
What components are used in eduVPN and how do they communicate with each other? 10

eduVPN Client (Phone) . 10
Portal . 10
VPN server API . 10
OpenVPN-Daemon . 10
OpenVPN . 11
Node . 11
RADIUS, LDAP, SAML, . 11

How does eduVPN with WireGuard work? . 11

Process 12
Sprint 1 (Initial improvements) . 12

Dictionary . 12
Introduction . 12
Research strategy . 12
Implementation . 12
Demo and review . 14

Sprint 2 (Admin features) . 16
Introduction . 16
Research strategy . 16
Implementation . 16
Demo and review . 19

Sprint 3 (Deployment and packaging) . 19
Dictionary . 19
Introduction . 20
Research strategy . 20
Implementation . 20
Demo and review . 21

2

Sprint 4 (Android APP) . 21
Dictionary . 21
Introduction . 21
Research strategy . 22
Implementation . 22
Demo and review . 27

Sprint 5 (IP management) . 27
Introduction . 27
Research strategy . 27
Implementation . 27
Demo and review . 28

Tasks for complete WireGuard support 29
Multiple WireGuard servers . 29
WireGuard-Daemon security . 29

Secure connection between portal and WireGuard-Daemon 29
WireGuard-Daemon authentication . 29

TCP . 29
Configuration expiry . 30
eduVPN Profiles . 30
IPv6 . 30
Support in all eduVPN clients . 30
Consider using the pre-shared symmetric key mode . 30

Recommendations 31
Implement the tasks for complete WireGuard support . 31
Drop support for CentOS . 31
Improve Android app test speed . 31

Conclusions 32

Evaluation 33

Appendices 34
Initial setup request details . 34
Connection setup request details . 37

3

Summary

SURF is a cooperation which provides different services for all its members. Its members include
universities like Fontys, research labs and other institutions. One of these services is eduVPN. eduVPN
is used (by for example students) to protect their communication on public Wi-Fi networks and to
access their institutions’ network from home. eduVPN is continually improving their service and one
opportunity to improve eduVPN is to use WireGuard instead of OpenVPN. eduVPN is built using
OpenVPN. WireGuard is a new VPN implementation, which should be faster than OpenVPN.

Integrating WireGuard completely requires more time than available in this internship, so the task is
to build a proof of concept. This means that the basic functionality should be available. During this
internship the WireGuard integration on the server side was improved and extended. This includes:

• WireGuard configurations can now be deleted.
• eduVPN WireGuard software depends on fewer dependencies.
• Admins can now see who is connected using WireGuard.
• Admins can now disable WireGuard users.
• eduVPN with WireGuard support is now available in distributions packages for Fedora and Debian.
• eduVPN with WireGuard support can now be easily deployed using a deployment script.

On the client side nothing had yet been done. During this internship support for WireGuard was added
in the eduVPN Android app.

There are still tasks that have to be done to completely integrate WireGuard into eduVPN, but a proof
of concept has been successfully built.

4

Introduction

When working from home you want to have access to all digital services that you have access to when
you are physically on your university or company. eduVPN provides software which makes this possible.
When more people start to work from home, this software has to scale with the amount of users. The
part of eduVPN which is most important when scaling, is the underlying software that is used for VPN
connections: OpenVPN. OpenVPN is a full-featured VPN solution that has been around since 20011. In
2016 a new VPN implementation was released to the public: WireGuard. WireGuard aims to be simpler,
faster, leaner, and more useful, than other VPN implementations2.

Using WireGuard instead of OpenVPN could mean a faster eduVPN service. Some work has already
been done by another intern to support WireGuard. In this report, the process of improvements done
and extensions made is described.

Free software
eduVPN is free software. Both the server side and all eduVPN clients are free software. Free as in
price, but more importantly also free as in freedom. Everyone has the freedom to run eduVPN, study it,
change it and redistribute eduVPN with or without changes. These freedoms enable people to share and
cooperate, which are essential for a society.

In the spirit of free software, all changes done during this internship were published online (with
permission), so other people can use and improve the changes in the projects used in this internship:

• WireGuard Daemon
• Portal with WireGuard support
• WireGuard Debian package builder
• Android client with WireGuard support

1Wikipedia contributors. (2021, January 6). OpenVPN. Wikipedia. https://en.wikipedia.org/wiki/OpenVPN
2Donenfeld, J. A. (n.d.). WireGuard: fast, modern, secure VPN tunnel. Retrieved 4 January 2021, from

https://www.wireguard.com/

5

https://github.com/fantostisch/wireguard-daemon
https://github.com/fantostisch/wireguard-vpn-user-portal
https://github.com/fantostisch/deb-builder
https://github.com/fantostisch/android/tree/wireguard

The company (SURF)

This internship was done for SURF. SURF is a cooperation between more than 100 education and research
institutions like universities to collaborate on digital projects3. Fontys is also a member of SURF4. A
member of SURF can use the services provided by SURF. SURF consists of multiple operating companies,
these companies are currently being merged into SURF5.

• SURFnet: Manages the national research and education network (NREN), eduroam and eduVPN.
• SURFMarket: Manages software licenses, cloud services and digital content for institutions.
• SURFSara: Manages high-performance computing (HPC) services, data management and storage,

cloud, e-science support and visualization.

One of projects managed by SURFnet is a VPN service, that has to be improved in this internship. This
VPN service is used by students of universities to protect their communications on public Wi-Fi networks
and to access the university network from home.

3The organisation and management of SURF. (n.d.). SURF.nl. Retrieved 6 September 2020, from
https://www.surf.nl/en/about-surf/the-organisation-and-management-of-surf

4Manen, F. (n.d.). Overview of the members of SURF. SURF.nl. Retrieved 6 September 2020, from
https://www.surf.nl/en/the-surf-cooperative/surf-members

5Nouwen, N. (n.d.). SURF operating companies. SURF.nl. Retrieved 6 september 2020, from https://www.surf.nl/en/surf-
operating-companies

6

https://en.wikipedia.org/wiki/SURFnet
https://en.wikipedia.org/wiki/Eduroam

Project

Context / Initial situation
SURF provides a VPN solution to universities, research labs, etc., to allow students, researchers and staff
to use a VPN connection on their devices. A VPN can be used to encrypt all traffic, send it to another
computer that will decrypt the traffic, and then send it to a website. This can be used to prevent people
from spying on the local network to see what websites you visit. The website you visit will see the IP
address of the VPN and not your original IP, which preserves your privacy. A VPN can also be used to
access systems that are not public but only accessible from within a company or university. When you
are in a country that blocks certain websites, you can use a VPN to access them anyway.

The VPN solution build by SURFnet (eduVPN) is currently built using OpenVPN. When using OpenVPN
as your VPN software, it is necessary to import a config file on the client. eduVPN offers a website to
download the right config for your institution. At some point in time, organizations started to ask for
an easier way to set up a VPN connection, this resulted in the development of eduVPN clients which
allows connecting to eduVPN without having to download and import configuration files manually. These
configuration files are downloaded by the eduVPN client automatically.

OpenVPN is one of the existing VPN implementations. OpenVPN is a full-featured VPN solution that
has been around since 20016. In 2016 a new VPN implementation was released to the public: WireGuard.
WireGuard aims to be simpler, faster, leaner and more useful, than other VPN implementations7.

Using WireGuard instead of OpenVPN could mean a faster eduVPN service. By using WireGuard instead
of OpenVPN for eduVPN the performance of eduVPN should improve. WireGuard should offer better
performance and improved security, because the code base is smaller which means it is easier to check for
security flaws.

Project goal
The goal of the project is to have a version of eduVPN which is implemented using WireGuard. This
implementation covers both the server side and the client side. This WireGuard implementation will
not have all the features that the OpenVPN implementation provides. Not all clients will be modified to
support WireGuard, only the Android client will be modified to create a proof of concept.

Assignment
The assignment is to create a PoC (proof of concept) in which it is possible to connect to a WireGuard
eduVPN server by using a eduVPN client. There has already been done some work to support Wire-
Guard, but at the moment this WireGuard implementation is not complete. The existing WireGuard
implementation will be extended to make it possible to use a WireGuard connection using the eduVPN
Android client.

6Wikipedia contributors. (2021, January 6). OpenVPN. Wikipedia. https://en.wikipedia.org/wiki/OpenVPN
7Donenfeld, J. A. (n.d.). WireGuard: fast, modern, secure VPN tunnel. Retrieved 4 January 2021, from

https://www.wireguard.com/

7

Constraints
The existing wireguard-daemon, used by eduVPN to manage the WireGuard server, is written in Go,
vpn-user-portal in PHP and the Android app in Java and Kotlin. These languages will have to be used.
The eduVPN project has developing practices that have to be followed. These practices can be found on
Github and include:

• PHP code should run on all PHP version >= 5.4 (Which means it should also run on PHP 7.x).
• Do not use frameworks.
• Minimize the number of dependencies.
• Only use high quality, stable, small libraries that follow Semantic Versioning.
• Prefer dependencies that are already properly packages in CentOS/EPEL.

Development strategy
To develop the necessary software, the Agile framework Scrum will be used. To implement WireGuard
in eduVPN, multiple subtasks have to be completed. These subtasks will be done in sprints. This
way a small part of the integration will be developed that can be tested without requiring a complete
WireGuard integration. When not everything is implemented, it can still be shown that parts of the
implementation work. There will be 5 sprints, each sprint will cover a subtask that is necessary for a
complete implementation. After every sprint the project manager is informed about the progress and
a demo of new functionality will be shown. In the case of a longer sprint, the project manager will be
informed while the sprint is still in progress. After every sprint the planning will be updated to represent
new developments (like a sprint that takes longer or shorter than expected).

Existing code for the server side of eduVPN is written in PHP and Go, because I have never used Go
before, a startup phase is planned in which I will learn the basics of Go. Because I do not have a lot of
experience with developing an Android app, Sprint 5 in which the existing Android eduVPN client will
be updated to support WireGuard will take longer than the other sprints.

8

https://github.com/eduvpn/documentation/blob/779a7aee592834858f3ed4de343635e7c7369fb6/DEVELOPMENT_PRACTICES.md

How does eduVPN work?

Dictionary
LDAP Lightweight Directory Access Protocol (LDAP)
RADIUS Remote Authentication Dial-In User Service (RADIUS)
SAML Secure Assertion Markup Language (SAML)
VPN Configuration The VPN configuration is a file which contains the keys and the hostnames of

the VPN which are necessary to create a VPN connection. Both WireGuard and OpenVPN have
their own configuration file format. Might be referred to as just configuration or config.

Research strategy
• Workshop, Prototyping: To understand what components are used and how eduVPN works an

eduVPN server will be created. For simplicity all components will run on one computer. Most
institutions allow their students to login using the same credentials they use for logging in to other
university related services. To accomplish this, eduVPN can connect to servers storing users using
LDAP, RADIUS, SAML and other authentication protocols. To learn how this works a freeRADIUS
server will be created.

• Field, document analysis: To further understand the design of eduVPN, I will read the eduVPN
documentation written by eduVPN developers.

• Library, Literature study: To understand OpenVPN, I will read the documentation and articles
about OpenVPN.

• Workshop, Decomposition: A diagram with eduVPN broken into its components will be created.
Arrows will indicate the communication between components.

9

https://freeradius.org

What components are used in eduVPN and how do they com-
municate with each other?

Figure 1: Network diagram eduVPN with OpenVPN. All arrows that initiate a connection also receive a
response, but most arrows indicating a response have been omitted for clarity.

The device will request a configuration with a key pair from the portal. The portal will use the API to
create a new configuration. This configuration is then used to connect to OpenVPN. When OpenVPN
encounters a new connection it will ask the Node if the key pair used is valid, the Node will then ask the
API if the user used a valid key pair. When the key pair is valid the connection will be accepted.

eduVPN Client (Phone)
This is the device of the user, a student or teacher using eduVPN.

Portal
There are 2 ways for a user to obtain a configuration necessary to connect to eduVPN. The user can use
an eduVPN client, or he can go the portal to download a configuration manually. The user visits the
URL of the portal to obtain a configuration, and the eduVPN clients connect to the portal to obtain a
configuration.

VPN server API
The VPN server API, or just API, is used by the Portal to store and retrieve information about users
and configurations. In the future the API will be merged into the portal. This is the reason that no
WireGuard functionality was built into the API.

OpenVPN-Daemon
The OpenVPN-Daemon is used to retrieve a list of clients connected to OpenVPN and to disconnect
clients when the system administrator disables a user.

10

OpenVPN
OpenVPN is the VPN that the client connects to, to set up and use a VPN connection.

Node
Every time a user connects to OpenVPN, OpenVPN asks the Node if this is user has the right credentials
to use the VPN service.

RADIUS, LDAP, SAML, . . .
It is possible to connect eduVPN with existing authentication software like RADIUS, LDAP or SAML.

How does eduVPN with WireGuard work?

Figure 2: Network diagram eduVPN with WireGuard. All arrows that initiate a connection also receive a
response, but most arrows indicating a response have been omitted for clarity.

Before this internship, there was no WireGuard support in an eduVPN client and the official WireGuard
app had to be used. The user downloads a configuration in the portal and imports these configurations
in the WireGuard app.

When a user creates a WireGuard configuration in the portal, the portal tells the WireGuard-Daemon to
create a config. The Daemon reserves an IP address for the configuration and adds this configuration
to WireGuard. Before this internship the user’s browser had to connect directly to the daemon, after
Sprint 1 the browser only talks to the Portal. After sprint 4, the Android eduVPN client with WireGuard
support can be used instead of manually creating a configuration.

After creating a configuration the user can either download the configuration as a file or scan a QR code
which contains the configuration. This QR code can be scanned by the official WireGuard app.

11

Process

Sprint 1 (Initial improvements)
Dictionary
WireGuard interface The WireGuard interface is a virtual network interface. Network interfaces can

be hardware or software based. Hardware based network interfaces use the WiFi chip in your PC or
the physical port in which you can put a cable which connects you to the internet. The WireGuard
interface is a virtual interface created by software which is used for the VPN implementation.

Introduction
Multiple tasks were planned for sprint 1.

When connecting to the WireGuard VPN, it is currently not possible to access the internet, it is only
possible to connect to other clients that are also using the VPN. This problem will be fixed in this sprint.

The existing WireGuard-Daemon, the component that connects the portal and the WireGuard VPN, will
be improved. According to the lead developer of eduVPN the current WireGuard-Daemon has too many
unnecessary dependencies that have to be removed. The functionality provided by these dependencies
has to be implemented or another workaround has to be thought of.

At the moment, the QR code that can be scanned by an official WireGuard client is generated by the
daemon. To accomplish this, the browser used to open the portal connects to the daemon which makes it
necessary to expose the daemon to the internet which is unacceptable. This will be fixed in this sprint.

Research strategy
• Library, Literature study: To understand what the dependencies that are used do, their documenta-

tion will be read.
• Lab, Unit test: Unit tests will be added to automatically test if code still works after changes.

Implementation
Internet using WireGuard

A previous intern started the development of a WireGuard-Daemon and the necessary changes in the
portal to make it possible to connect to a WireGuard VPN by scanning a QR code in the portal. At first,
it did not seem to be possible to connect to the internet using the VPN connection, so it was planned
to fix this issue. After doing some more research I discovered I did not read the documentation of the
previous intern properly and it was already possible to connect to the internet after setting the right
packet filter rules. These rules are now set automatically when deploying (since Sprint 3).

WireGuard Daemon

The daemon depends on multiple other projects which are not necessary. Using more dependencies
means it is necessary to do more work when packaging the daemon, because the dependencies that are
not packaged yet have to be packaged for both Debian and Fedora (Sprint 3). If a dependency is not
maintained anymore, extra work is necessary to maintain this dependency. Having less code means the
code is more maintainable and a security audit is easier.

12

Multiple dependencies were removed from the daemon.

At first nftables and netns were removed. These dependencies set up the packet filter rules. Setting up
the packet filter rules did not work, so removing these dependencies did not change the behaviour of the
daemon. Setting up the right packet filters is now done when deploying the daemon.

Then the httprouter dependency was removed. Instead of using an external library to do the routing,
the routing is now done by the Go built-in net/http library. This library is shipped with the Go language
itself. Manually routing using this library requires more code, but the routing code is now explicit which
means it is more clear how HTTP requests are routed.

The daemon did not specify which version of a library should be used, it always used the latest version of
a library. This is problematic as this might work today but will break in the future when the library
changes in a backward incompatible way. To solve this problem I decided to convert the project to use Go
modules. Go modules is a way to specify what libraries and what version of these libraries your project
uses. This also made it easier to get an overview of what libraries were still used in the daemon.

Then the go-bindata-assetfs was removed, this dependency was used to serve static files over HTTP.
This was used for the index page and was replaced by an index page which returns 404 Not found.

Then the netlink dependency was removed. This dependency set up the WireGuard interface. Setting
up the WireGuard interface was replaced with running a shell script, but this was not ideal either. In
Sprint 3 these scripts were removed and the responsibility of setting up the WireGuard interface was
moved to a config file that is installed when installing the daemon package. This config file is used by
systemd.

Other improvements to the daemon were made which were not planned:

• Do not store the private key of the client, this is a security risk.
• Allow clients to create a config without sending the private key (this will later be used by the

Android app).
• The mutex used to secure the data from being written to and read at the same time was locked and

unlocked throughout the whole application. This was moved to one file which made it much easier
to prove there are no concurrency issues.

• Refactor code so tests are possible and add unit tests.

Portal

In the software that the previous intern wrote, the WireGuard-Daemon created the QR code that was
shown in the portal. Creating this QR code had to be moved to the portal. Unfortunately the WireGuard
portal pages were completely invalid HTML. It did work as a browser tries to do its best with invalid
HTML, but it might break after a browser update. The HTML was fixed by recreating the WireGuard
pages. The PHP code was also improved and the QR Code generation was moved to the portal.

13

https://www.freedesktop.org/wiki/Software/systemd/

Demo and review

Figure 3: WireGuard configurations overview

14

Figure 4: WireGuard configurations overview after creating a configuration

At the end of sprint one a demo was shown with the functionality that was planned. This demo showed
how to create a WireGuard config in the portal and how to scan the QR code to connect to the internet
using the WireGuard VPN by using the official WireGuard Android client. Using the VPN with the
WireGuard Windows and Linux client was also tested and works. While implementing the features in
sprint 1, some unplanned work had to be done. The code had to be changed to make it possible to test
the code, Go modules are now used, and other improvements were done. In sprint 2 I will improve the
code using the feedback provided by the lead eduVPN developer.

15

Sprint 2 (Admin features)
Introduction
In this sprint it was planned to make it possible for admins to disable users and to view active WireGuard
connections. This functionality is already implemented for OpenVPN.

Research strategy
• Workshop, code review: During Sprint 1, feedback was received on the code written in Sprint 1 and

the code will be improved based on this feedback.
• Library, community research: There will be searched for projects that have similarities in functionality

with the daemon to understand how they implemented the functionality to get a list of the currently
connected users.

Implementation
Blocking users

When blocking a user it is necessary to prevent the user from creating new configurations, to disable
already created configurations, and to terminate active VPN connection. When blocking a user this user
is logged out everywhere so it is not possible to create new configurations anymore. Every OpenVPN
connection is also killed. Every time a user connects with OpenVPN it is checked if the user is blocked.
This is not possible with WireGuard. When a user is blocked, the user is unable to create new WireGuard
configurations, but the existing configurations keep working. These configurations have to be disabled by
the daemon. This functionality was built and when an admin now disables a user, all the WireGuard
configurations of the user are disabled instantly. When the admin enables the user again, the configurations
are enabled again if they were not removed. A config might be removed when we do not have enough IP
addresses available, see Sprint 5 IP management.

Viewing connected users

WireGuard is a stateless protocol, so there is no list of users that are connected. When someone is using
an official WireGuard client and stops the VPN connection, the clients simply stops sending packets but
there is no way for the server to know if the client is disconnected or if the client is not using his internet.
WireGuard has an optional keep-alive which could be used for this, but this keep-alive is (in my opinion)
a waste of internet bandwidth. A keep-alive sends an empty packet at a specified interval to tell a firewall
or NAT that the connection should be kept open.

At first, I looked at projects similar to the daemon to see how these projects view connected users. There
was only one project which had this functionality. This project analyzed WireGuard logs to get more
information about the current connections but a simpler approach was chosen to see who is connected.

After looking at the WireGuard code (initially to find a way to get the last time the amount of bandwidth
used was changed), it was discovered that WireGuard stores the last time a handshake took place.

In wireguard/messages.h multiple limits are hard coded. These include:

REKEY_AFTER_TIME = 120
REJECT_AFTER_TIME = 180

Which means that every 120 seconds WireGuard will attempt to perform a new handshake and will reject
all packets if there was no handshake after 180 seconds. After this time the VPN can not be used anymore
if there was no handshake. The user did thus not use his VPN connection for at least 3 minutes. After
these 3 minutes we assume the user disabled his VPN connection, and we do not list the user anymore in
the connected users list.

When the eduVPN Android app disables his WireGuard connection, the app sends a disconnect call to
the server and the server will remove this user from the connected user lists instantly, see Sprint 5 IP
management.

16

Figure 5: Admins can now view the WireGuard configuration of their users

Deleting configurations

It was not possible to delete existing configs, this was implemented this sprint. There is now a delete
button.

17

Figure 6: WireGuard configuration overview

Viewing WireGuard configuration of users

It was for an admin not possible to view the WireGuard configurations of their users. This functionality
was added this Sprint.

18

Figure 7: Admins can now view who is connected to WireGuard

Demo and review
At the end op sprint 2 the demo was only shown to the lead developer of eduVPN, because the project
manager was not available at that time. The lead developer came with the idea to set up a server with
WireGuard so that they could try it out themselves. I created this server in Sprint 3 and discovered some
other issues which will be fixed in the next sprint. The right firewall rules have to be created and right
now OpenVPN and WireGuard use IP addresses in the same range which might break if OpenVPN and
WireGuard give the same IP to a different client.

Sprint 3 (Deployment and packaging)
Dictionary
Git commit hash Git is a system to control versions of software. Using Git it is possible to split

software changes in separate commits which make it possible for other developers to easily see what
changes were made since the previous version. To identify these commits, Git uses a Git commit
hash which is the unique identifier for a commit.

Distribution packages (distro packages) Distro packages are programs which can be installed on
Linux distributions. Debian uses .deb files and Fedora uses .dnf files, these are comparable to

19

.exe files on Windows.
Software repository (repository) A software repository on Debian is an URL which points to a

location where distribution packages can be retrieved from. Debian has their own repository
for software supported by Debian. Everyone can host their own repository where they can host
packages.

Introduction
eduVPN can be installed using a script and distribution (distro) packages. The installation method
using distro packages is available for all software necessary for running eduVPN with OpenVPN. This
installation method should also be available for WireGuard. To support this an installation script (also
called deployment script) has to be made and the necessary distro packages have to be created.

eduVPN is available in distro packages for Debian, Fedora and CentOS. WireGuard packages will only
be made for versions of distros that have WireGuard available in their official repositories. This includes
Debian 11 and Fedora 33.

Research strategy
• Library, Literature study: To learn how to package for Debian and Fedora I will read the packaging

manual provided by these distributions.
• Field, export interview: The server side developer of eduVPN already packaged existing eduVPN

software. He will be asked for help when problems occur.
• Workshop, code review: During sprint 3, the code written in Sprint 2 will be improved based on

the feedback received.

Implementation
Packaging

Because all unnecessary dependencies were removed in sprint 1, the WireGuard-Daemon only depends on
2 packages: wgctrl and go-cmp. wgctrl however depends on 3 other packages which depend on other
packages as shown in the picture:

Figure 8: WireGuard Daemon dependency tree

go-cmp is already available in Debian8 The circular dependency between rtnetlink and netlink is problem-
atic. To build rtnetlink, netlink is necessary, but to build and test netlink, rtnetlink is necessary. To solve
this problem we first have to build netlink without running the tests that depend on rtnetlink, and then

8Debian – Details of package golang-github-google-go-cmp-dev in bullseye. (n.d.). Debian. Retrieved 6 November 2020,
from https://packages.debian.org/bullseye/golang-github-google-go-cmp-dev

20

build netlink. Doing this manually is no problem but to automate this process is a bit harder. Currently,
the tests of rtnetlink are not run at all9 to solve this problem.

Fedora has wg-ctrl and go-cmp available in its repositories, so it was assumed only the daemon had to
be packaged, because the dependencies were already available. Unfortunately, this was not the case as
wg-ctrl in Fedora was outdated, so the new version of wg-ctrl had to be packaged.

Debian only has go-cmp in its repositories which meant that all its dependencies had to be packaged
for Debian. After packaging all dependencies, the existing builder was used to automate building the
packages, and to create a Debian repository which can be added to a Debian server to install eduVPN
with WireGuard support. When deploying a new version of my code to a VM I use this repository which
now other people that want to deploy eduVPN with WireGuard can use. Instructions for using this
repository can be found in the README.md of the WireGuard-Daemon.

The existing builder had to be modified to build Go packages. Most software projects use semantic
versioning, but some Go projects use git commit hashes instead (ipaddr and wgctrl in our case). This
makes it harder to determine what version of the project is necessary. The existing builder used uscan
which did not support git commit hashes. I looked at the code of uscan to see how much work it would
be to add support for git commit hashes to uscan but was unable to figure this out in a short time and
decided to use the software that the Debian Go Team uses instead of uscan: gbp export-orig. When
the builder now wants to build ipaddr or wgctrl, it uses gbp export-orig instead of uscan.

Deployment script

WireGuard can now be deployed by running a deployment script. This script is available in the
README.md of the WireGuard-Daemon.

Demo and review
A demo server was deployed using the new deployment script and the new packages. Some unexpected
problems where encountered when packaging but these problems were resolved in time.

Sprint 4 (Android APP)
Dictionary
Fork To add WireGuard support to eduVPN, a copy of the eduVPN software was made with the

WireGuard changes. This copy is called a fork.
Mobile deep linking A deeplink is a link to a specific location inside a mobile app.10 The eduVPN

app uses the deeplink org.eduvpn.app:/api/callback?code=eyJhbG... to share an access token
from the portal with app.

Introduction
eduVPN has multiple clients that can be used to connect to set up a VPN connection using OpenVPN.
There are clients for Windows, macOS and iOS, Android and Linux.

On all the platforms where the eduVPN client is available it is possible to download the OpenVPN
software and manually import an OpenVPN configuration downloaded from the portal. It is possible to
download a configuration from the portal and import it into the official WireGuard client for the same
platforms, but to prevent users from having to manually download and import configurations, WireGuard
support has to be added to the eduVPN clients. Because of time constraints, I was decided to add
WireGuard support to only 1 client. According to the project manager Windows is the most used client,
so it would make sense to start with the Windows client. However, I personally do not use Windows, and
I am more interested in Kotlin (used for the Android app) than in C# (used for the Windows client) so I
decided to add WireGuard support to the Android client.

9Aquina, N. (2020, November 5). fantostisch/deb-builder. GitHub. https://github.com/fantostisch/deb-
builder/blob/2592f46c3bc85b3abec766867ce5180900be8ff4/build_packages.sh#L116

10Wikipedia contributors. (2020, December 28). Mobile deep linking. Wikipedia.
https://en.wikipedia.org/wiki/Mobile_deep_linking

21

https://github.com/fantostisch/wireguard-daemon/blob/master/README.md
https://semver.org/
https://semver.org/
https://github.com/fantostisch/wireguard-daemon/blob/master/README.md
https://github.com/Amebis/eduVPN
https://github.com/eduvpn/apple
https://github.com/eduvpn/android/
https://github.com/eduvpn/python-eduvpn-client

Research strategy
• Library, Community Research: When implementing WireGuard in the Android app, I will look at

existing Android apps that use WireGuard as their VPN implementation.
• Library, Literature study: To understand how the Android WireGuard library should be used, I

will read the documentation of this library.
• Workshop, Code review: All code that was written in this Sprint will be reviewed by the eduVPN

Android developer and the code will be improved based on his feedback.
• Workshop, Prototyping: To understand how the current Android app works, the requests that the

app makes to an eduVPN server will be examined.
• Lab, Unit test: The UI tests were fixed and new unit tests were written to test the WireGuard

functionality.

Implementation
When using the eduVPN app and a server that supports WireGuard, the app now has to choose between
OpenVPN and WireGuard. After a discussion with the project manager and the lead developer we choose
to add a setting to the eduVPN app where the user can choose to use WireGuard when it is available.
This option was added to the settings:

Figure 9: eduVPN Android app with WireGuard support: settings screen

When the user has enabled WireGuard, it has to be checked if the server supports WireGuard. To
determine how and when to do this I had to know how the app works, and what communication already
happens between the app and the server. To learn what exactly happens, I set up the eduVPN portal
and API on my laptop and determined using WireShark what traffic was send to eduVPN. I created 2

22

https://www.wireshark.org/

diagrams to visualize what exactly happens. The first diagram shows what happens when the user select
his organization for the first time and has to log in. The second diagram show what happens when the
user is already logged in and selects his organization.

Initial setup

Figure 10: Sequence diagram when user uses the Android app for the first time

In the above diagram it is shown what interactions there are between the user, the application, and the
eduVPN system to retrieve an authentication token that can be used to retrieve a VPN configuration.
This happens when the user selects his institution for the first time. The numbers correspond to the
technical details of the requests which can be found in the appendices.

Currently, there is traffic between the portal and the API as these are 2 different components in the
eduVPN system. These components will be merged in the next major release of eduVPN.

After the user selects his institution, the app retrieves the endpoints where it has to connect to in the
info.json file. It then tries to get an OAuth access token by opening the page where the user can open
a deeplink which shares the access token with the eduVPN app. Before the user can open this page the
user has to log in and after logging in the button can be pressed which approves to share the access token
with the application.

23

Initialize connection

Figure 11: Sequence diagram when user starts OpenVPN connection

When the user wants to start a VPN connection for the first time, the app will request the server to
create a key pair. The next time the app connects it already has a key pair and a certificate and will
check if the certificate it has is still valid. The app will then retrieve the configuration that will be used
to initiate the VPN connection. The numbers correspond to the technical details of the requests which
can be found in the appendices.

Tests

When starting the development on the Android app, the UI tests did not work anymore. The tests logged
in to eduVPN using Chrome, but Chrome changed its UI which broke the tests. These tests were fixed
and a pull request was created. This pull request was merged.

Coroutines

When starting to do network requests in the Android App to make calls to the WireGuard API on
the portal, I preferred to use Kotlin Coroutines which is the new and preferred way by JetBrains to
do asynchronous programming. The WireGuard code depends on the existing API code which used a
combination of callbacks and RxJava. Adding jet another asynchronous programming method would
make the app harder to maintain. After a discussion with the Android developer, it was decided to
replace RxJava with coroutines. I replaced RxJava with coroutines, this code was merged in the latest

24

https://github.com/eduvpn/android/pull/314
https://kotlinlang.org/docs/reference/coroutines-overview.html

version of eduVPN11 and will be part of the next Android App release.

WireGuard

The server might enable or disable WireGuard at any time, so it would not suffice to only check for
WireGuard support when doing the initial setup (logging in). When setting up the connection first the
info.json is downloaded and then the OpenVPN specific API calls are made to the portal. One option
is to sent in the info.json the information if WireGuard is enabled. The other option is to let the client
make an API call that returns if WireGuard is enabled. After a discussion with the project manager
and the lead developer it was chosen to implement an API call, so the WireGuard code is better split
from the OpenVPN functionality. This makes it easier to keep the WireGuard fork of the eduVPN code
up-to-date.

If the user enables WireGuard in the OpenVPN app, it will now make an API call to see if WireGuard is
supported on the server:

Figure 12: Sequence diagram WireGuard enabled check

When WireGuard is enabled, the server responds with a 200 OK and a body containing “Y”: a shorter
version of Yes. Then the client creates a public private key pair and sends the public key to the server:

Figure 13: Sequence diagram creating WireGuard configuration

Then the client starts the VPN connection using the certificate it received. The key pair is saved and will
be reused next time (this will change in Sprint 5).

After connecting, the user can see if the client is using OpenVPN or WireGuard in the Connection info:
11Aquina, N. (2020b, December 10). Replace RxJava with Kotlin Coroutines by fantostisch · Pull Request #315 ·

eduvpn/android. GitHub. https://github.com/eduvpn/android/pull/315

25

Figure 14: Screenshot Android eduVPN client connected using WireGuard

Other Android apps using WireGuard

When looking how to implement the WireGuard Android library into the eduVPN Android app, I looked
at how other project implemented their WireGuard support.

The official WireGuard app was the most useful to look at as it used the Android library which I decided
to use.

Mullvad is another VPN provider which published their VPN implementation online. They build their
own cross-platform wrapper around the WireGuard Go implementation. Since we use the WireGuard
Android library, looking further into their implementation will not help.

Another VPN provider which published their code is IVPN, they also use the WireGuard Android library,
but they have copy-pasted this library into their app and have made changes to this implementation. For
example, instead of implementing the necessary tunnel interface they changed this interface to a class.

Kernel space implementation

Most software runs in userspace, in userspace a program can not damage hardware or access memory
from other programs. When a program runs in kernelspace, it has access to all memory and hardware.

WireGuard has a kernelspace implementation and a userspace implementation. The kernelspace imple-
mentation is faster, but is only available on Unix based systems (Linux, OpenBSD). Android uses the
Linux kernel and could thus use the kernelspace implementation. Kernelspace programs can not be easily
installed like an app, it requires the developers of Android to merge the WireGuard kernelspace imple-
mentation into Android’s kernel. This was done in the (at the time of writing) latest unreleased Android
version.12 Currently the eduVPN Android app uses the userspace Go implementation of WireGuard, but
in the future it might be possible to use the kernel implementation.

12Rahman, M. (2020, October 26). Google adds WireGuard VPN to Android 12’s Linux Kernel. XDA-Developers.
https://www.xda-developers.com/google-adds-wireguard-vpn-android-12-linux-kernel-5-4/

26

https://git.zx2c4.com/wireguard-go/about/
https://git.zx2c4.com/android_kernel_wireguard/about/

Code review

The WireGuard code in the Android app has been reviewed by the Android client maintainer, the code
was improved based on this feedback, and then the code was merged into the WireGuard branch.

Demo and review
At the end of the sprint a Demo was shown with the Android app to prove it could use WireGuard when
enabled in the settings.

Sprint 5 (IP management)
Introduction
WireGuard uses static IP addresses. Because of this, an institution might run out of IPv4 addresses. This
problem should be solved.

Research strategy
• Library, Community research: There will researched online if other people already solved the

problems with dynamic IP allocation in WireGuard.

Implementation
An institution might want to give every VPN user a public IPv4 address. This is possible with WireGuard,
but WireGuard uses static IP addresses which means that when a user connects using WireGuard it must
already know the IP address it is going to use. This IP address is stored in the configuration that the
eduVPN client receives from the server which is the same configuration that can be downloaded from
the portal. Every time a user downloads a configuration, a public IP address will then be reserved for
this configuration, but an institution might not have an IP available for every user for every device. An
institution can not easily receive more public IPv4 addresses because there are not enough IPv4 addresses
available for everyone13.

OpenVPN does not have this problem, because it uses dynamic IP allocation: when a device connects, the
device receives an IP address from OpenVPN and when the device disconnects the IP becomes available
for other users.

After searching online if other project already implemented dynamic IP allocation with WireGuard,
wg-dynamic was discovered. wg-dynamic is an implementation of the WireGuard kernel module that
uses dynamic IP allocation. wg-dynamic can unfortunately not be used in the Android client, because it
is a kernel-module and it is not available in the Android Linux kernel. There is currently no userspace
wg-dynamic implementation and developing this implementation might take a long time. To solve this
problem it is necessary to tell the server that the user disabled the VPN and thus someone else can use
our IP address. The official WireGuard Android app does not tell the server when the user disables the
connection, but this disconnect functionality was implemented in the eduVPN Android app. When the
user disables the connection, a request is sent to the server that we disabled the VPN.

Figure 15: Sequence diagram eduVPN client WireGuard disconnect
13What is IPv4 Run Out? (2019, August 23). RIPE Network Coordination Centre. https://www.ripe.net/manage-ips-

and-asns/ipv4/ipv4-run-out

27

https://github.com/eduvpn/android/tree/wireguard
https://git.zx2c4.com/wg-dynamic/about/

Instead of creating 2 new features: release IP and request IP, it is simpler to remove the configuration
when the user is done with the connection, and create a new configuration when the user starts a new
VPN connection. Using this design it is not necessary to add more code to the WireGuard-Daemon,
because it already has the functionality to create and delete a config. However, it should still be researched
how creating a new key pair for every connection affects security.

Demo and review
At the end of Sprint 5 we were busy debugging an issue with the Android App on ChromeOS which
made it impossible for ChromeOS users to use eduVPN. After this issue was resolved, I discussed the
progress of IP management and how it was implemented with the project manager which agreed on the
implementation.

28

Tasks for complete WireGuard
support

This is an (incomplete) list of tasks that have to be done before WireGuard has te same functionality as
OpenVPN in eduVPN.

Multiple WireGuard servers
In the original project plan it was planned to add support for multiple WireGuard servers. WireGuard
should scale better than OpenVPN, because WireGuard uses multithreading and OpenVPN does not.
To scale with OpenVPN, an OpenVPN process is necessary for every CPU core. Multiple WireGuard
servers will thus be less quickly necessary than with OpenVPN, but When a second server is necessary on
the long term to support more users, there is currently no easy way to integrate this second WireGuard
server with an existing eduVPN installation.

WireGuard-Daemon security
Secure connection between portal and WireGuard-Daemon
Support for a secure connection between the portal and the WireGuard-Daemon was originally planned
in the sprint where support would be added for multiple WireGuard servers. However, this sprint was
replaced and currently there is no secure connection between the portal and the WireGuard-Daemon.
This means that when the WireGuard server is not running on the same machine as the portal, the
connection could be intercepted. This makes it impossible to have a WireGuard server and a portal that
are for example located in different countries.

Since the WireGuard-Daemon uses an HTTP API this can be easily and quickly solved by adding a TLS
proxy in front of the WireGuard-Daemon. Apache or NGINX can be used for this task.

WireGuard-Daemon authentication
Currently, everyone with access to the WireGuard-Daemon API can do requests, but this should be
limited to the portal. When sending requests to the vpn-server-api, a Basic Authorization header
has to be added to authenticate the request. In this header a username and password are sent to the
vpn-server-api which can then check if this matches the username and password of a known component.
The same method can be used for the WireGuard-Daemon.

TCP
There is currently no TCP support when using WireGuard. OpenVPN can be used over UDP and TCP.
WireGuard can only be used over UDP. UDP is the preferred method as it is faster than TCP14,15. The

14Why does use UDP and TCP? (n.d.). OpenVPN. Retrieved 7 January 2021, from https://openvpn.net/faq/why-does-
openvpn-use-udp-and-tcp/

15What is TCP Meltdown? (n.d.). OpenVPN. Retrieved 7 January 2021, from https://openvpn.net/faq/what-is-tcp-
meltdown/

29

disadvantage of UDP is that UDP might be blocked on restrictive networks16.

Configuration expiry
When a student leaves his university, his account might be disabled in the system the university uses to
register all user accounts (e.g. RADIUS or LDAP), but the eduVPN system is not notified when this
user is disabled. When a user has already downloaded an OpenVPN configuration this configuration will
keep working until a specified time. WireGuard configurations do not expire at all, so unless the user is
explicitly disabled using the portal, the user can still use a WireGuard VPN connection. Instead of a
configuration that expires, this problem could also be solved by notifying the eduVPN system of users
that are disabled or removed from the authentication system.

eduVPN Profiles
When using eduVPN with OpenVPN, different type of users (students, teachers, external users) can be
assigned a different configuration. No such functionality has been implemented for WireGuard. All users
get the exact same configuration.

IPv6
Currently, the WireGuard-Daemon only assigns IPv4 addresses to configurations. IPv6 support should
be added.

Support in all eduVPN clients
WireGuard support was added to the Android eduVPN client, but support for the Windows, Linux,
macOS and iOS client has yet to be developed.

Consider using the pre-shared symmetric key mode
WireGuard has an optional pre-shared symmetric key mode which is required for post-quantum resistance17.
This mode is currently not used, but it should be used to protect against attacks using quantum computers.

16Why does use UDP and TCP? (n.d.). OpenVPN. Retrieved 7 January 2021, from https://openvpn.net/faq/why-does-
openvpn-use-udp-and-tcp/

17Donenfeld, J. A. (n.d.-a). Protocol & Cryptography - WireGuard. WireGuard. Retrieved 8 January 2021, from
https://www.wireguard.com/protocol/

30

Recommendations

Implement the tasks for complete WireGuard support
As described in the section Tasks for complete WireGuard support, there are still tasks that have to
be done before WireGuard support is complete.

Drop support for CentOS
Because of the support for CentOS, eduVPN is stuck with PHP 5.4 (PHP 8 is available at the time of
writing). eduVPN can not use libraries that most other projects use, because most projects have dropped
support for PHP 5. Existing CentOS installations can be replaced with Debian.

Improve Android app test speed
Running the unit tests of the Android app takes a lot of time. Especially the UI tests are slow. Most of
the time the phone is doing nothing while running the UI tests. This prevents developers from running
these tests which makes them less useful. The developer experience would be greatly improved if the
tests run in a few seconds.

31

Conclusions

eduVPN is a VPN used by institutions like universities and research labs to allow their users to securely
connect to the internet and to connect to their institutions’ network to access internal services.

eduVPN is built using OpenVPN. OpenVPN is a widely used VPN implementation. Since 2016 a new
VPN implementation was released to the public: WireGuard. WireGuard aims to be faster, simpler, and
more useful. In this internship I improved and extended the existing WireGuard support.

The planned functionality was implemented and a proof of concept showing WireGuard integration in
eduVPN has been successfully delivered. The official WireGuard client can be used to set up a VPN
connection to eduVPN and on Android the eduVPN app can be used. Admins can view the WireGuard
configurations of their users, view who is currently using WireGuard and block users. Admins can now
easily deploy eduVPN with WireGuard support on their servers.

WireGuard support in eduVPN is not yet production ready and multiple tasks have to be completed
before a release to production. If you want to help complete these tasks, you can start today. The
necessary code repositories are linked in the introduction.

32

Evaluation

I enjoyed working for SURF and working at the eduVPN project. Working on a feature that is actually
going to be used at some point motivated to work on the project. It also motivates when your code is
merged into the main branch of the software and will be part of the next release (Android app).

Because of an ongoing pandemic I was only at the SURF office every 1-2 weeks which required communi-
cating using voice and video chat. This made it a little harder to communicate, but I think the impact
was minimal as we had a digital meeting every week and when I had questions I could always ask for help
using digital communications. Even if I could have been more at the SURF office, online communications
would still be required as the lead developer and the Android app developer both live abroad. After every
Sprint a demo was shown which made it clear what worked and what did not work, this way the progress
made was clear.

I learned a lot while working on the eduVPN project. I learned how eduVPN works and learned about
OpenVPN and WireGuard. To develop the WireGuard-Daemon I had to learn the Go programming
language which I had never used before. I also learned how to package software for Debian and Fedora,
in particular Go and PHP packages. Doing the packaging myself made me realize how much work it
takes to keep Linux distributions up-to-date by packaging every new version of software. I also learned
how Android applications work and how to develop them. Android development introduced me to new
concepts like dependency injection, how front-ends can be built and how to make the front-end instantly
react to changes like a VPN tunnel that gets enabled or disabled.

33

Appendices

Initial setup request details

Figure 16: Sequence diagram when user uses the Android app for the first time

1. Endpoints

{
"api": {

"http://eduvpn.org/api#2": {
"api_base_uri": "https://local.na1.nl/api.php",
"authorization_endpoint": "https://local.na1.nl/_oauth/authorize",
"token_endpoint": "https://local.na1.nl/oauth.php/token"

}
},
"v": "2.3.4"

}

2. GET /_oauth/authorize?. . .

Parameter Value
redirect_uri org.eduvpn.app:/api/callback

34

Parameter Value
client_id org.eduvpn.app.android
response_type code
state VW9Gt+5nBACO9kLAovDYM5JMZtGLgxIw
nonce pEeIErze__4ZgUnt0U5OSg
scope config
code_challenge XcrDHLbADeRk-HNSnWxo4A7xLHnYUU1PAHH0Tgx3A24
code_challenge_method S256

3. POST /_form/auth/verify

Parameter Value
userName Nick4
userPass password4
_form_auth_redirect_tohttp://localhost:8082/_oauth/authorize?redirect_uri=org.eduvpn.app:/api/callback
client_id org.eduvpn.app.android
response_type code
state VW9Gt+5nBACO9kLAovDYM5JMZtGLgxIw
nonce pEeIErze__4ZgUnt0U5OSg
scope config
code_challenge XcrDHLbADeRk-HNSnWxo4A7xLHnYUU1PAHH0Tgx3A24
code_challenge_method S256

4. 302 Found

todo

Location: http://localhost:8082/_oauth/authorize?redirect_uri=org.eduvpn.app%3A%2Fapi%2Fcallback&client_id=org.eduvpn.app.android&response_type=code&state=VW9Gt%2B5nBACO9kLAovDYM5JMZtGLgxIw&nonce=pEeIErze__4ZgUnt0U5OSg&scope=config&code_challenge=XcrDHLbADeRk-HNSnWxo4A7xLHnYUU1PAHH0Tgx3A24&code_challenge_method=S256

5. POST /api.php/user_update_session_info

Parameter Value
user_id Nick4
session_expires_at 2020-12-27T10:34:29+01:00
permission_list []

6. POST /_oauth/authorize?. . .

URL

Parameter Value
redirect_uri org.eduvpn.app:/api/callback
client_id org.eduvpn.app.android
response_type code
state VW9Gt%2B5nBACO9kLAovDYM5JMZtGLgxIw
nonce pEeIErze__4ZgUnt0U5OSg
scope config
code_challenge XcrDHLbADeRk-HNSnWxo4A7xLHnYUU1PAHH0Tgx3A24
code_challenge_method S256

Postdata

35

Parameter Value
approve yes

7. POST /_oauth/token

Parameter Value
code eyJhbGc. . .
grant_type authorization_code
redirect_uri org.eduvpn.app%3A%2Fapi%2Fcallback
code_verifier W_WFD-8xo. . .
client_id org.eduvpn.app.android

8. 200 Ok

{
"access_token": "eyJhbGc...i7x-Cg",
"refresh_token": "eyJhbGc...VUn-Bg",
"token_type": "bearer",
"expires_in": 3600

}

36

Connection setup request details

Figure 17: Sequence diagram when user starts a OpenVPN connection

1. Endpoints

{
"api": {

"http://eduvpn.org/api#2": {
"api_base_uri": "https://local.na1.nl/api.php",
"authorization_endpoint": "https://local.na1.nl/_oauth/authorize",
"token_endpoint": "https://local.na1.nl/oauth.php/token"

}
},
"v": "2.3.5"

}

2. Profile list send from API to portal

Todo: This a profile list of an incorrectly configured server, so this example is not representative.

{
"profile_list": {

"ok": true,
"data": {

"internet": {
"defaultGateway": true,

37

"routes": [],
"dns": [

"192.168.11.1"
],
"dnsSuffix": [],
"clientToClient": false,
"listen": "::",
"enableLog": false,
"enableAcl": false,
"aclPermissionList": [],
"managementIp": "127.0.0.1",
"vpnProtoPorts": [

"udp/1194",
"tcp/1194"

],
"exposedVpnProtoPorts": [],
"hideProfile": false,
"tlsProtection": "tls-crypt",
"blockLan": true,
"profileNumber": 1,
"displayName": "Internet Access",
"range": "10.207.1.0/25",
"range6": "fd9c:f2a2:8cbb:8b77::/64",
"hostName": "local.na1.nl"

}
}

}
}

3. Profile list send from portal to client

{
"profile_list": {

"ok": true,
"data": [

{
"profile_id": "internet",
"display_name": "Internet Access",
"two_factor": false,
"default_gateway": true

}
]

}
}

4. POST /api.php/create_keypair

Parameter Value
display_name eduVPN for Android

5. User session expiry

{
"user_session_expires_at": {

"ok": true,
"data": "2021-02-09T14:08:53+01:00"

}

38

}

6. POST /api.php/add_client_certificate

Parameter Value
user_id NickR
display_name org.eduvpn.app.android
client_id org.eduvpn.app.android
expires_at 2021-02-09T14:08:53+01:00

7. 201 Created

{
"add_client_certificate": {

"ok": true,
"data": {

"certificate": "-----BEGIN CERTIFICATE-----\nMIIEHDCCA...lsdL\n-----END CERTIFICATE-----",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIG/gIBA...HyAP\n-----END PRIVATE KEY-----",
"valid_from": 1605099991,
"valid_to": 1612876133

}
}

}

8. Certificate with private key

{
"create_keypair": {

"ok": true,
"data": {

"certificate": "-----BEGIN CERTIFICATE-----\nMIIEHDCCA...lsdL\n-----END CERTIFICATE-----",
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIG/gIBA...HyAP\n-----END PRIVATE KEY-----"

}
}

}

9. OpenVPN Certificate

{
"server_info": {

"ok": true,
"data": {

"tls_crypt": "#\n# 2048 bit OpenVPN static key\n#\n-----BEGIN OpenVPN Static key V1-----\ndbeb...0fd6\n-----END OpenVPN Static key V1-----",
"ca": "-----BEGIN CERTIFICATE-----\nMIIEEDCCA...RneB\n-----END CERTIFICATE-----"

}
}

}

10 OpenVPN client configuration

OpenVPN Client Configuration
dev tun
client
nobind
remote-cert-tls server
verb 3
server-poll-timeout 10
ncp-ciphers AES-256-GCM

39

cipher AES-256-GCM
reneg-sec 0
<ca>
-----BEGIN CERTIFICATE-----
MIIEEDCCA...neB
-----END CERTIFICATE-----
</ca>
tls-version-min 1.2
tls-cipher TLS-ECDHE-RSA-WITH-AES-256-GCM-SHA384:TLS-ECDHE-ECDSA-WITH-AES-256-GCM-SHA384
<tls-crypt>
#
2048 bit OpenVPN static key
#
-----BEGIN OpenVPN Static key V1-----
dbeb...0fd6
-----END OpenVPN Static key V1-----
</tls-crypt>
remote local.na1.nl 1194 udp
remote local.na1.nl 1194 tcp

11 GET /api.php/check_certificate?common_name=b535bf74bfd3e39ba9b3a5f68f102612

12 GET /api.php/client_certificate_info?common_name=b535bf74bfd3e39ba9b3a5f68f102612

13 Client certificate info

{
"client_certificate_info": {

"ok": true,
"data": {

"user_id": "NickR",
"user_is_disabled": "0",
"display_name": "org.eduvpn.app.android",
"valid_from": "2020-11-12T12:11:13+00:00",
"valid_to": "2021-02-10T12:14:37+00:00",
"client_id": "org.eduvpn.app.android"

}
}

}

40

	Preface
	Summary
	Introduction
	Free software

	The company (SURF)
	Project
	Context / Initial situation
	Project goal
	Assignment
	Constraints
	Development strategy

	How does eduVPN work?
	Dictionary
	Research strategy
	What components are used in eduVPN and how do they communicate with each other?
	eduVPN Client (Phone)
	Portal
	VPN server API
	OpenVPN-Daemon
	OpenVPN
	Node
	RADIUS, LDAP, SAML, …

	How does eduVPN with WireGuard work?

	Process
	Sprint 1 (Initial improvements)
	Dictionary
	Introduction
	Research strategy
	Implementation
	Demo and review

	Sprint 2 (Admin features)
	Introduction
	Research strategy
	Implementation
	Demo and review

	Sprint 3 (Deployment and packaging)
	Dictionary
	Introduction
	Research strategy
	Implementation
	Demo and review

	Sprint 4 (Android APP)
	Dictionary
	Introduction
	Research strategy
	Implementation
	Demo and review

	Sprint 5 (IP management)
	Introduction
	Research strategy
	Implementation
	Demo and review

	Tasks for complete WireGuard support
	Multiple WireGuard servers
	WireGuard-Daemon security
	Secure connection between portal and WireGuard-Daemon
	WireGuard-Daemon authentication

	TCP
	Configuration expiry
	eduVPN Profiles
	IPv6
	Support in all eduVPN clients
	Consider using the pre-shared symmetric key mode

	Recommendations
	Implement the tasks for complete WireGuard support
	Drop support for CentOS
	Improve Android app test speed

	Conclusions
	Evaluation
	Appendices
	Initial setup request details
	Connection setup request details

